Source code for coax.td_learning._expectedsarsa

import gymnasium
import jax
import haiku as hk

from ..utils import is_stochastic
from ._base import BaseTDLearningQWithTargetPolicy


[docs]class ExpectedSarsa(BaseTDLearningQWithTargetPolicy): r""" TD-learning with expected-SARSA updates. The :math:`n`-step bootstrapped target is constructed as: .. math:: G^{(n)}_t\ =\ R^{(n)}_t + I^{(n)}_t\,\mathop{\mathbb{E}}_{a\sim\pi_\text{targ}(.|S_{t+n})}\, q_\text{targ}\left(S_{t+n}, a\right) Note that ordinary :class:`SARSA <coax.td_learning.Sarsa>` target is the sampled estimate of the above target. Also, as usual, the :math:`n`-step reward and indicator are defined as: .. math:: R^{(n)}_t\ &=\ \sum_{k=0}^{n-1}\gamma^kR_{t+k} \\ I^{(n)}_t\ &=\ \left\{\begin{matrix} 0 & \text{if $S_{t+n}$ is a terminal state} \\ \gamma^n & \text{otherwise} \end{matrix}\right. Parameters ---------- q : Q The main q-function to update. pi_targ : Policy The policy that is used for constructing the TD-target. q_targ : Q, optional The q-function that is used for constructing the TD-target. If this is left unspecified, we set ``q_targ = q`` internally. optimizer : optax optimizer, optional An optax-style optimizer. The default optimizer is :func:`optax.adam(1e-3) <optax.adam>`. loss_function : callable, optional The loss function that will be used to regress to the (bootstrapped) target. The loss function is expected to be of the form: .. math:: L(y_\text{true}, y_\text{pred}, w)\in\mathbb{R} where :math:`w>0` are sample weights. If left unspecified, this defaults to :func:`coax.value_losses.huber`. Check out the :mod:`coax.value_losses` module for other predefined loss functions. policy_regularizer : Regularizer, optional If provided, this policy regularizer is added to the TD-target. A typical example is to use an :class:`coax.regularizers.EntropyRegularizer`, which adds the policy entropy to the target. In this case, we minimize the following loss shifted by the entropy term: .. math:: L(y_\text{true} + \beta\,H[\pi], y_\text{pred}) Note that the coefficient :math:`\beta` plays the role of the temperature in SAC-style agents. """ def __init__( self, q, pi_targ, q_targ=None, optimizer=None, loss_function=None, policy_regularizer=None): if not isinstance(q.action_space, gymnasium.spaces.Discrete): raise NotImplementedError( f"{self.__class__.__name__} class is only implemented for discrete actions spaces") if pi_targ is None: raise TypeError("pi_targ must be provided") super().__init__( q=q, pi_targ=pi_targ, q_targ=q_targ, optimizer=optimizer, loss_function=loss_function, policy_regularizer=policy_regularizer) def target_func(self, target_params, target_state, rng, transition_batch): rngs = hk.PRNGSequence(rng) # action propensities params, state = target_params['pi_targ'], target_state['pi_targ'] S_next = self.pi_targ.observation_preprocessor(next(rngs), transition_batch.S_next) dist_params, _ = self.pi_targ.function(params, state, next(rngs), S_next, False) A_next = jax.nn.softmax(dist_params['logits'], axis=-1) # only works for Discrete actions # evaluate on q_targ params, state = target_params['q_targ'], target_state['q_targ'] S_next = self.q_targ.observation_preprocessor(next(rngs), transition_batch.S_next) if is_stochastic(self.q): return self._get_target_dist_params(params, state, next(rngs), transition_batch, A_next) Q_sa_next, _ = self.q_targ.function_type1(params, state, next(rngs), S_next, A_next, False) f, f_inv = self.q.value_transform.transform_func, self.q_targ.value_transform.inverse_func return f(transition_batch.Rn + transition_batch.In * f_inv(Q_sa_next))