Source code for coax.policy_objectives._deterministic_pg

import warnings

import jax.numpy as jnp
import haiku as hk
import chex

from ..utils import check_preprocessors, is_qfunction, is_stochastic
from ._base import PolicyObjective


[docs]class DeterministicPG(PolicyObjective): r""" A deterministic policy-gradient objective, a.k.a. DDPG-style objective. See :doc:`spinup:algorithms/ddpg` and references therein for more details. .. math:: J(\theta; s,a)\ =\ q_\text{targ}(s, a_\theta(s)) Here :math:`a_\theta(s)` is the *mode* of the underlying conditional probability distribution :math:`\pi_\theta(.|s)`. See e.g. the :attr:`mode` method of :class:`coax.proba_dists.NormalDist`. In other words, we evaluate the policy according to the current estimate of its best-case performance. This objective has the property that it explicitly maximizes the q-value. The full policy loss is constructed as: .. math:: \text{loss}(\theta; s,a)\ =\ -J(\theta; s,a) - \beta_\text{ent}\,H[\pi_\theta] + \beta_\text{kl-div}\, KL[\pi_{\theta_\text{prior}}, \pi_\theta] N.B. in order to unclutter the notation we abbreviated :math:`\pi(.|s)` by :math:`\pi`. Parameters ---------- pi : Policy The parametrized policy :math:`\pi_\theta(a|s)`. q_targ : Q The target state-action value function :math:`q_\text{targ}(s,a)`. optimizer : optax optimizer, optional An optax-style optimizer. The default optimizer is :func:`optax.adam(1e-3) <optax.adam>`. regularizer : Regularizer, optional A policy regularizer, see :mod:`coax.regularizers`. """ REQUIRES_PROPENSITIES = False def __init__(self, pi, q_targ, optimizer=None, regularizer=None): if not is_qfunction(q_targ): raise TypeError(f"q must be a q-function, got: {type(q_targ)}") if q_targ.modeltype != 1: raise TypeError("q must be a type-1 q-function") super().__init__(pi=pi, optimizer=optimizer, regularizer=regularizer) self.q_targ = q_targ if not check_preprocessors( self.pi.action_space, self.q_targ.action_preprocessor, self.pi.proba_dist.preprocess_variate): warnings.warn( "it seems that q_targ.action_preprocessor does not match " "pi.proba_dist.preprocess_variate; please instantiate your q-function using " "q = coax.Q(..., action_preprocessor=pi.proba_dist.preprocess_variate) to ensure " "that the preprocessors match") @property def hyperparams(self): return hk.data_structures.to_immutable_dict({ 'regularizer': getattr(self.regularizer, 'hyperparams', {}), 'q': {'params': self.q_targ.params, 'function_state': self.q_targ.function_state}}) def objective_func(self, params, state, hyperparams, rng, transition_batch, Adv): rngs = hk.PRNGSequence(rng) # get distribution params from function approximator S = self.pi.observation_preprocessor(next(rngs), transition_batch.S) dist_params, state_new = self.pi.function(params, state, next(rngs), S, True) # compute objective: q(s, a_greedy) S = self.q_targ.observation_preprocessor(next(rngs), transition_batch.S) A = self.pi.proba_dist.mode(dist_params) log_pi = self.pi.proba_dist.log_proba(dist_params, A) params_q, state_q = hyperparams['q']['params'], hyperparams['q']['function_state'] if is_stochastic(self.q_targ): dist_params_q, _ = self.q_targ.function_type1(params_q, state_q, rng, S, A, True) Q = self.q_targ.proba_dist.mean(dist_params_q) Q = self.q_targ.proba_dist.postprocess_variate(next(rngs), Q, batch_mode=True) else: Q, _ = self.q_targ.function_type1(params_q, state_q, next(rngs), S, A, True) # clip importance weights to reduce variance W = jnp.clip(transition_batch.W, 0.1, 10.) # the objective chex.assert_equal_shape([W, Q]) chex.assert_rank([W, Q], 1) objective = W * Q return jnp.mean(objective), (dist_params, log_pi, state_new)
[docs] def update(self, transition_batch, Adv=None): r""" Update the model parameters (weights) of the underlying function approximator. Parameters ---------- transition_batch : TransitionBatch A batch of transitions. Adv : ndarray, ignored This input is ignored; it is included for consistency with other policy objectives. Returns ------- metrics : dict of scalar ndarrays The structure of the metrics dict is ``{name: score}``. """ return super().update(transition_batch, None)
[docs] def grads_and_metrics(self, transition_batch, Adv=None): r""" Compute the gradients associated with a batch of transitions with corresponding advantages. Parameters ---------- transition_batch : TransitionBatch A batch of transitions. Adv : ndarray, ignored This input is ignored; it is included for consistency with other policy objectives. Returns ------- grads : pytree with ndarray leaves A batch of gradients. function_state : pytree The internal state of the forward-pass function. See :attr:`Policy.function_state <coax.Policy.function_state>` and :func:`haiku.transform_with_state` for more details. metrics : dict of scalar ndarrays The structure of the metrics dict is ``{name: score}``. """ return super().grads_and_metrics(transition_batch, None)